Restriction of Secretory Granule Motion near the Plasma Membrane of Chromaffin Cells
نویسندگان
چکیده
We used total internal reflection fluorescence microscopy to study quantitatively the motion and distribution of secretory granules near the plasma membrane (PM) of living bovine chromaffin cells. Within the approximately 300-nm region measurably illuminated by the evanescent field resulting from total internal reflection, granules are preferentially concentrated close to the PM. Granule motion normal to the substrate (the z direction) is much slower than would be expected from free Brownian motion, is strongly restricted over tens of nanometer distances, and tends to reverse directions within 0.5 s. The z-direction diffusion coefficients of granules decrease continuously by two orders of magnitude within less than a granule diameter of the PM as granules approach the PM. These analyses suggest that a system of tethers or a heterogeneous matrix severely limits granule motion in the immediate vicinity of the PM. Transient expression of the light chains of tetanus toxin and botulinum toxin A did not disrupt the restricted motion of granules near the PM, indicating that SNARE proteins SNAP-25 and VAMP are not necessary for the decreased mobility. However, the lack of functional SNAREs on the plasma or granule membranes in such cells reduces the time that some granules spend immediately adjacent to the PM.
منابع مشابه
Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis.
Total internal reflection fluorescence microscopy was used to monitor changes in individual granule motions related to the secretory response in chromaffin cells. Because the motions of granules are very small (tens of nanometers), instrumental noise in the quantitation of granule motion was taken into account. ATP and Ca2+, both of which prime secretion before fusion, also affect granule motio...
متن کاملSecretory granule behaviour adjacent to the plasma membrane before and during exocytosis: total internal reflection fluorescence microscopy studies.
Our current notions of different granule pools, granule interaction with the plasma membrane, and ultimately granule and plasma membrane soluble N-ethylmaleimide-sensitive-factor attachment protein (SNARE) interactions, result largely from inferences based upon biochemical alterations of secretion kinetics. Another view of events comes from studies using total internal reflection fluorescence m...
متن کاملBovine chromaffin granule membranes undergo Ca(2+)-regulated exocytosis in frog oocytes
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membran...
متن کاملRegulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D.
The ADP-ribosylation factor (ARF) GTP-binding proteins have been implicated in a wide range of vesicle transport and fusion steps along the secretory pathway. In chromaffin cells, ARF6 is specifically associated with the membrane of secretory chromaffin granules. Since ARF6 is an established regulator of phospholipase D (PLD), we have examined the intracellular distribution of ARF6 and PLD acti...
متن کاملRegulated Exocytosis in Chromaffin Cells
The ADP-ribosylation factor (ARF) GTP-binding proteins have been implicated in a wide range of vesicle transport and fusion steps along the secretory pathway. In chromaffin cells, ARF6 is specifically associated with the membrane of secretory chromaffin granules. Since ARF6 is an established regulator of phospholipase D (PLD), we have examined the intracellular distribution of ARF6 and PLD acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 153 شماره
صفحات -
تاریخ انتشار 2001